The topological conjugacy of Cantor minimal systems is not Borel

Konrad Deka

March 26, 2024

Complexity of equivalence relations

Let E, F be equivalence relations on sets X, Y, respectively. Assume X, Y are Polish spaces ($=$ completely metrizable, separable topological spaces).

Complexity of equivalence relations

Let E, F be equivalence relations on sets X, Y, respectively. Assume X, Y are Polish spaces ($=$ completely metrizable, separable topological spaces).
We say that E is reducible to F, written $E \leq F$, if there exists a Borel function $f: X \rightarrow Y$ such that

$$
x_{1} E x_{2} \Leftrightarrow f\left(x_{1}\right) F f\left(x_{2}\right) .
$$

If $E \leq F$ and $F \leq E$, we say that they are bireducible.

Complexity of equivalence relations

Let E, F be equivalence relations on sets X, Y, respectively. Assume X, Y are Polish spaces ($=$ completely metrizable, separable topological spaces).
We say that E is reducible to F, written $E \leq F$, if there exists a Borel function $f: X \rightarrow Y$ such that

$$
x_{1} E x_{2} \Leftrightarrow f\left(x_{1}\right) F f\left(x_{2}\right) .
$$

If $E \leq F$ and $F \leq E$, we say that they are bireducible. A great amount of work has been done to study how various equivalence relations compare against each other in the partial order \leq.

Equivalence relations from group actions

Suppose a group G acts on X, it induces the orbit equivalence relation

$$
x E_{X}^{G} x^{\prime} \Leftrightarrow \exists g \in G: x^{\prime}=g x .
$$

"Isomorphism of ..." as an equivalence relation

Let X, Y be compact metric spaces. Write $X \cong Y$ if they are homeomorphic.
\cong is an equivalence relation on \{compact metric spaces\}. We need \cong to be an eq. rel. on a Polish space.

"Isomorphism of ..." as an equivalence relation

Let X, Y be compact metric spaces. Write $X \cong Y$ if they are homeomorphic.
\cong is an equivalence relation on \{compact metric spaces\}.
We need \cong to be an eq. rel. on a Polish space.

Solution:

- every compact metric space is homeomorphic to a closed subset of a Hilbert cube $H:=[0,1]^{\mathbb{N}}$,
- let $K(H):=\{$ closed subsets of $H\}$. There is a reasonable Polish topology on $K(H)$ (Vietoris topology, given by Hausdorff metric).
- So \cong is a equivalence relation on $K(H)$.

Some types of equivalence relations relevant to this talk

- S_{∞}-group actions,
- $E_{S_{\infty}}$ which is the largest among those (e.g. isomorphism of countable graphs)
- Polish group actions,
- $E_{\text {Polish }}$ which is largest among those (e.g. homeomorphism of compact metric spaces),
- Borel equivalence relations.

Measurable dynamics

A measure preserving system (MPS) is a triple (X, \mathcal{B}, μ, T), where (X, \mathcal{B}, μ) is a standard Borel space with a probability measure, and $T: X \rightarrow X$ is an invertible measurable map s.t.

$$
\mu(A)=\mu\left(T^{-1} A\right) \quad \text { for all } A \in \mathcal{B}
$$

A MPS is ergodic if $\mu\left(A \triangle T^{-1} A\right)=0$ implies $\mu(A) \in\{0,1\}$.

- Isomorphism of MPS $\geq E_{S_{\infty}}$ (Hjorth 2001)
- Isomorphism of ergodic MPS is not reducible to any S_{∞} action (Hjorth 2001)
- Isomorphism of ergodic MPS is not Borel (Foreman, Rudolph, Weiss 2011)

Topological dynamics

A topological dynamical system (TDS for short) is a pair (X, T) where X is a compact metric space and $T: X \rightarrow X$ is a homeomorphism.
Two TDS (X, T) and (Y, S) are topologically conjugate (also called isomorphic) if there exists a homeomorphism $\phi: X \rightarrow Y$ such that $\phi \circ T \circ \phi^{-1}=S$.

Topological dynamics

A topological dynamical system (TDS for short) is a pair (X, T) where X is a compact metric space and $T: X \rightarrow X$ is a homeomorphism.
Two TDS (X, T) and (Y, S) are topologically conjugate (also called isomorphic) if there exists a homeomorphism $\phi: X \rightarrow Y$ such that $\phi \circ T \circ \phi^{-1}=S$.
A TDS (X, T) is minimal if it has no nontrivial subsystems, i.e.

$$
A \subseteq X \text { closed and } T(A)=A \Rightarrow A=\emptyset \text { or } A=X
$$

Equivalently, (X, T) is minimal if $\forall x \in X$ the orbit $\mathcal{O}(x):=\left\{T^{n} x: n \geq 0\right\}$ is dense in X.

Topological dynamics

A Cantor system is a TDS where X is homeomorphic to the Cantor set. The full shift over $\{0,1, \ldots n-1\}$ is the system $\left(\{0,1, \ldots n-1\}^{\mathbb{Z}}, \sigma\right)$, where $\sigma(x)(i)=x(i+1)$.
A subshift is a subsystem of full shift (over some n).

Topological dynamics

A Cantor system is a TDS where X is homeomorphic to the Cantor set. The full shift over $\{0,1, \ldots n-1\}$ is the system $\left(\{0,1, \ldots n-1\}^{\mathbb{Z}}, \sigma\right)$, where $\sigma(x)(i)=x(i+1)$.
A subshift is a subsystem of full shift (over some n).

	all	minimal
arbitrary TDS	$\sim E_{\text {Polish }}$	not reducible to $E_{S_{\infty}}$ (Peng)
Cantor TDS	$\sim E_{S_{\infty}}$ (Gao)	$\geq=^{+}$(Kaya), not Borel (DGKKK)
subshifts	$\sim E_{\infty}$ (Clemens)	$\geq E_{0}$

Isomorphism of Cantor TDS

The systems we just constructed are not minimal. Gao asked about complexity of \cong of minimal Cantor TDS. Kaya (2015) proved that \cong of minimal Cantor TDS $\geq=^{+}$.

Theorem (D, Garcia-Ramos, Kasprzak, Kunde, Kwietniak) Isomorphism of minimal Cantor TDS is not Borel.

Flip conjugacy

Two minimal Cantor TDS T, S are flip-conjugate if $T \cong S$ or $T \cong S^{-1}$.
Given T, we define the topological full group [[T]] as follows:
a function $\phi \in \operatorname{Homeo}(C)$ is in [[T]] iff there exists a clopen partition
$C=A_{1} \sqcup \cdots \sqcup A_{n}$ and integers $k_{1} \ldots k_{n}$ such that $\left.\phi\right|_{A_{i}}=\left.T^{k_{i}}\right|_{A_{i}}$.

- [[T]] is countable
- $T \cong \cong_{\text {flip }} S$ iff [[T]] and [[S]] isomorphic (Giordano, Putnam, Skau '99)
- [[T]] is amenable (Juschenko, Monod '12)
- Commutator subgroup $D([[T]])$ is simple (Matui '06)
- $T \cong_{\text {flip }} S$ iff $D([[T]])$ and $D([[S]])$ isomorphic
- [[T]] is finitely generated iff $(X, T) \cong$ to a subshift

Theorem (D, Garcia-Ramos, Kasprzak, Kunde, Kwietniak)

Flip conjugacy of minimal Cantor TDS is not Borel.

Some ideas about the proof

$C:=$ Cantor set.
Homeo $(C):=\{f: C \rightarrow C \mid f$ homeomorphism $\}$
$f \cong g$ iff $(C, f) \cong(C, g)$.

Some ideas about the proof

$C:=$ Cantor set.
Homeo $(C):=\{f: C \rightarrow C \mid f$ homeomorphism $\}$
$f \cong g$ iff $(C, f) \cong(C, g)$.

Another viewpoint:
write $\sigma: C^{\mathbb{Z}} \rightarrow C^{\mathbb{Z}}$ for the map $\sigma(x)(n)=x(n+1)$.
If $A \subseteq C^{\mathbb{Z}}$ is closed, perfect, and $\sigma A=A$, then $\left(A,\left.\sigma\right|_{A}\right)$ is a Cantor TDS.
Write $\mathcal{K}_{\sigma}^{p}\left(C^{\mathbb{Z}}\right)$ for the family of all such sets.
Every Cantor TDS can be realized in this manner: A Cantor TDS (C, f) is isomorphic to $\left(A,\left.\sigma\right|_{A}\right)$, where

$$
A=\left\{\ldots f^{-1} x, x, f x, f^{2} x, \ldots \mid x \in C\right\} .
$$

For all our purposes, these two viewpoints are equivalent.

A rooted countable tree (vertices might have infinite degree) can be viewed as a set $T \subseteq \mathbb{N}^{<\mathbb{N}}$ such that if $w \in T$ then all prefixes of w are in T. A tree is ill-founded if it has an infinite branch. IF $:=\left\{T \in 2^{\mathbb{N}^{\mathbb{N}}}: T\right.$ ill-founded $\}$ is complete analytic subset of Trees. We will build a Borel reduction

$$
\text { Trees } \ni T \mapsto\left(X_{T}, X_{T}^{\prime}\right) \in \mathcal{K}_{\sigma}^{p}\left(C^{\mathbb{Z}}\right) \times \mathcal{K}_{\sigma}^{p}\left(C^{\mathbb{Z}}\right)
$$

such that $X_{T} \cong X_{T}^{\prime}$ iff T is ill-founded. This will be a Borel reduction from IF to \cong, which implies \cong is not Borel.

A factor map (surj. morphism) from tds (X, T) to (Y, S) is a continuous surjection $\pi: X \rightarrow Y$ such that $\pi \circ T=S \circ \pi$.

A factor map (surj. morphism) from tds (X, T) to (Y, S) is a continuous surjection $\pi: X \rightarrow Y$ such that $\pi \circ T=S \circ \pi$.
If $\left(X_{n}, \sigma\right)$ are subshifts, and $\pi_{n}: X_{n+1} \rightarrow X_{n}$ is a sequence of factor maps, we define their inverse limit $\lim _{\leftrightarrows}\left(X_{n}, \pi_{n}\right):=(X, \sigma)$, where

$$
\begin{aligned}
X=\{ & \left.\left(x_{1}, x_{2}, x_{3} \ldots\right): x_{n} \in X_{n} \text { and } \pi_{n}\left(x_{n+1}\right)=x_{n}\right\}, \\
& \sigma:\left(x_{1}, x_{2}, x_{3} \ldots\right) \mapsto\left(\sigma x_{1}, \sigma x_{2}, \sigma x_{3} \ldots\right) .
\end{aligned}
$$

The result does depend on the factor maps π_{n}.
On the other hand, factor maps are far from unique: if $\pi:(X, T) \rightarrow(Y, S)$ is a factor map, then so is $\psi \circ \pi$, where $\psi \in \operatorname{Aut}(Y, S)$.

A factor map (surj. morphism) from tds (X, T) to (Y, S) is a continuous surjection $\pi: X \rightarrow Y$ such that $\pi \circ T=S \circ \pi$.
If $\left(X_{n}, \sigma\right)$ are subshifts, and $\pi_{n}: X_{n+1} \rightarrow X_{n}$ is a sequence of factor maps, we define their inverse limit $\lim \left(X_{n}, \pi_{n}\right):=(X, \sigma)$, where

$$
\begin{aligned}
X=\{ & \left.\left(x_{1}, x_{2}, x_{3} \ldots\right): x_{n} \in X_{n} \text { and } \pi_{n}\left(x_{n+1}\right)=x_{n}\right\}, \\
& \sigma:\left(x_{1}, x_{2}, x_{3} \ldots\right) \mapsto\left(\sigma x_{1}, \sigma x_{2}, \sigma x_{3} \ldots\right) .
\end{aligned}
$$

The result does depend on the factor maps π_{n}.
On the other hand, factor maps are far from unique: if $\pi:(X, T) \rightarrow(Y, S)$ is a factor map, then so is $\psi \circ \pi$, where $\psi \in \operatorname{Aut}(Y, S)$.

Idea: take a sequence of subshifts $\left(X_{n}, \sigma\right)_{n \geq 1}$ and factor maps $\left(\pi_{n}\right)_{n \geq 1}$. Then take different factor maps $\left(\pi_{n}^{\prime}\right)_{n \geq 1}$, where $\pi_{n}^{\prime}=\psi_{n} \pi_{n}$ for some $\psi_{n} \in \operatorname{Aut}\left(X_{n}, \sigma\right)$. Then take two inverse limits X, X^{\prime}. Can we find a reasonable condition for these two inverse limits to be isomorphic?

Definition

Sequence of subshifts $\left(X_{n}, \sigma\right)$ and factor maps $\pi_{n}: X_{n+1} \rightarrow X_{n}$ is blended if $\forall i \geq j \geq 1$ every factor $\operatorname{map} \zeta: X_{i} \rightarrow X_{j}$ can be written as $\psi \circ \pi_{i-1} \circ \cdots \circ \pi_{j}$, where $\psi \in \operatorname{Aut}(Y, S)$.

Definition

Sequence of subshifts $\left(X_{n}, \sigma\right)$ and factor maps $\pi_{n}: X_{n+1} \rightarrow X_{n}$ is blended if $\forall i \geq j \geq 1$ every factor $\operatorname{map} \zeta: X_{i} \rightarrow X_{j}$ can be written as $\psi \circ \pi_{i-1} \circ \cdots \circ \pi_{j}$, where $\psi \in \operatorname{Aut}(Y, S)$.

Lemma (2)

X_{n}, π_{n} as above. Let $\pi_{n}^{\prime}: X_{n+1} \rightarrow X_{n}$ be a different sequence of factor maps. X, X^{\prime} resulting inverse limits. TFAE:
(i) (X, σ) and $\left(X^{\prime}, \sigma\right)$ isomorphic,
(ii) there exist automorphisms $f_{n} \in \operatorname{Aut}\left(X_{n}\right)$ such that $\pi_{n}^{\prime} f_{n+1}=f_{n} \pi_{n}$.

To a tree T, one can attach an inverse system of groups [FRW].
$V_{n}^{T}:=$ vertices of T at level n,

$G_{n}^{T}:=$ the vector space over \mathbb{F}_{2} with basis V_{n}, $\rho_{n}^{T}: G_{n+1}^{T} \rightarrow G_{n}^{T}$ defined by values on generators: $\rho_{n}^{T}(v)=\operatorname{parent}(v)$.

Lemma (3)

Let T be a tree. It's possible to find minimal subshifts $\left(X_{n}, \sigma\right)$ and factor maps $\pi_{n}: X_{n+1} \rightarrow X_{n}$ such that

- $\operatorname{Aut}\left(X_{n}, \sigma\right)=G_{n}^{T} \times \mathbb{Z}$, where \mathbb{Z} corresponds to the shift map
- Given two maps $F \in \operatorname{Aut}\left(X_{n+1}, \sigma\right), f \in \operatorname{Aut}\left(X_{n}, \sigma\right)$, we have $\pi_{n} F=f \pi_{n}$ iff $f=\rho_{n}^{T}(F)$.
- the collection $\left(X_{n}, \sigma\right)_{n \geq 1},\left(\pi_{n}\right)_{n \geq 1}$ is blended.

Combining everything together, we get

Lemma (4)

Let

$$
\mathcal{Y}:=\left\{T,\left(g_{n}\right)_{n \geq 1}: T \in \text { Trees, } g_{n} \in G_{n}^{T} \text { for all } n\right\}
$$

Then we have a Borel map

$$
\Phi: \mathcal{Y} \ni\left(T,\left(g_{n}\right)_{n \geq 1}\right) \mapsto\left(X, X^{\prime}\right) \in \mathcal{K}_{\sigma}^{p}\left(C^{\mathbb{Z}}\right) \times \mathcal{K}_{\sigma}^{p}\left(C^{\mathbb{Z}}\right)
$$

such that TFAE:
(i) X, X^{\prime} isomorphic,
(ii) there exist a sequence $f_{n} \in G_{n}^{T}$ such that $g_{n}+\rho_{n}\left(f_{n+1}\right)=f_{n}$

Combining everything together, we get

Lemma (4)

Let

$$
\mathcal{Y}:=\left\{T,\left(g_{n}\right)_{n \geq 1}: T \in \text { Trees, } g_{n} \in G_{n}^{T} \text { for all } n\right\}
$$

Then we have a Borel map

$$
\Phi: \mathcal{Y} \ni\left(T,\left(g_{n}\right)_{n \geq 1}\right) \mapsto\left(X, X^{\prime}\right) \in \mathcal{K}_{\sigma}^{p}\left(C^{\mathbb{Z}}\right) \times \mathcal{K}_{\sigma}^{p}\left(C^{\mathbb{Z}}\right)
$$

such that TFAE:
(i) X, X^{\prime} isomorphic,
(ii) there exist a sequence $f_{n} \in G_{n}^{T}$ such that $g_{n}+\rho_{n}\left(f_{n+1}\right)=f_{n}$

Proof.

Pick X_{n}, π_{n} as in previous lemma. Take $X:=\underset{\omega}{\lim }\left(X_{n}, \pi_{n}\right)$ and $X^{\prime}:=\lim _{\leftrightarrows}\left(X_{n}, g_{n} \pi_{n}\right)$. Equivalence of conditions (i) and (ii) follow from Lemma 2.

Given a tree T, define new tree $\Psi(T)$ and $g_{n} \in G_{n}^{\Psi(T)}$ to be as in picture.

Given a tree T, define new tree $\Psi(T)$ and $g_{n} \in G_{n}^{\Psi(T)}$ to be as in picture.

Lemma (5)

TFAE:
(i) There exists a sequence $f_{n} \in G_{n}^{\Psi(T)}$ such that $g_{n}+\rho_{n}\left(f_{n+1}\right)=f_{n}$,
(ii) T is ill-founded.

Given a tree T, define new tree $\Psi(T)$ and $g_{n} \in G_{n}^{\Psi(T)}$ to be as in picture.

Lemma (5)

TFAE:
(i) There exists a sequence $f_{n} \in G_{n}^{\Psi(T)}$ such that $g_{n}+\rho_{n}\left(f_{n+1}\right)=f_{n}$,
(ii) T is ill-founded.

Corollary

Trees $\ni T \xrightarrow{\text { lem. } 5}\left(\Psi(T),\left(g_{n}\right)_{n \geq 1}\right) \xrightarrow{\text { lem. } 4} X, X^{\prime}$
is a reduction from IF to \cong of minimal Cantor systems.

