The topological conjugacy of Cantor minimal systems is not Borel

Konrad Deka

March 26, 2024

1/18

Let E, F be equivalence relations on sets X, Y, respectively. Assume X, Y are Polish spaces (= completely metrizable, separable topological spaces). Let E, F be equivalence relations on sets X, Y, respectively. Assume X, Y are Polish spaces (= completely metrizable, separable topological spaces).

We say that *E* is reducible to *F*, written $E \le F$, if there exists a Borel function *f*: $X \rightarrow Y$ such that

$$x_1 E x_2 \Leftrightarrow f(x_1) F f(x_2).$$

If $E \leq F$ and $F \leq E$, we say that they are *bireducible*.

Let E, F be equivalence relations on sets X, Y, respectively. Assume X, Y are Polish spaces (= completely metrizable, separable topological spaces). We say that E is reducible to E written $E \leq E$ if there exists a Bere

We say that *E* is reducible to *F*, written $E \le F$, if there exists a Borel function $f: X \to Y$ such that

$$x_1 E x_2 \Leftrightarrow f(x_1) F f(x_2).$$

If $E \leq F$ and $F \leq E$, we say that they are *bireducible*. A great amount of work has been done to study how various equivalence relations compare against each other in the partial order \leq .

Suppose a group G acts on X, it induces the orbit equivalence relation

$$xE_X^G x' \Leftrightarrow \exists g \in G: x' = gx.$$

Let X, Y be compact metric spaces. Write $X \cong Y$ if they are homeomorphic.

 \cong is an equivalence relation on {compact metric spaces}.

We need \cong to be an eq. rel. on a Polish space.

Let X, Y be compact metric spaces. Write $X \cong Y$ if they are homeomorphic.

 \cong is an equivalence relation on {compact metric spaces}.

We need \cong to be an eq. rel. on a Polish space.

Solution:

- every compact metric space is homeomorphic to a closed subset of a Hilbert cube $H := [0, 1]^{\mathbb{N}}$,
- let K(H) := {closed subsets of H}. There is a reasonable Polish topology on K(H) (Vietoris topology, given by Hausdorff metric).
- So \cong is a equivalence relation on K(H).

- $S_{\infty}-$ group actions,
- $E_{S_{\infty}}$ which is the largest among those (e.g. isomorphism of countable graphs)
- Polish group actions,
- *E*_{Polish} which is largest among those (e.g. homeomorphism of compact metric spaces),
- Borel equivalence relations.

A measure preserving system (MPS) is a triple (X, \mathcal{B}, μ, T) , where (X, \mathcal{B}, μ) is a standard Borel space with a probability measure, and $T: X \to X$ is an invertible measurable map s.t.

$$\mu(A) = \mu(T^{-1}A)$$
 for all $A \in \mathcal{B}$.

A MPS is *ergodic* if $\mu(A \triangle T^{-1}A) = 0$ implies $\mu(A) \in \{0, 1\}$.

- Isomorphism of MPS $\geq E_{S_{\infty}}$ (Hjorth 2001)
- Isomorphism of ergodic MPS is not reducible to any S_∞ action (Hjorth 2001)
- Isomorphism of ergodic MPS is not Borel (Foreman, Rudolph, Weiss 2011)

A topological dynamical system (TDS for short) is a pair (X, T) where X is a compact metric space and $T: X \to X$ is a homeomorphism. Two TDS (X, T) and (Y, S) are topologically conjugate (also called *isomorphic*) if there exists a homeomorphism $\phi: X \to Y$ such that $\phi \circ T \circ \phi^{-1} = S$. A topological dynamical system (TDS for short) is a pair (X, T) where X is a compact metric space and $T: X \to X$ is a homeomorphism. Two TDS (X, T) and (Y, S) are topologically conjugate (also called isomorphic) if there exists a homeomorphism $\phi: X \to Y$ such that $\phi \circ T \circ \phi^{-1} = S$. A TDS (X, T) is minimal if it has no nontrivial subsystems, i.e.

$$A \subseteq X$$
 closed and $T(A) = A \implies A = \emptyset$ or $A = X$.

Equivalently, (X, T) is minimal if $\forall x \in X$ the orbit $\mathcal{O}(x) := \{T^n x : n \ge 0\}$ is dense in X.

A *Cantor system* is a TDS where X is homeomorphic to the Cantor set. The full shift over $\{0, 1, ..., n-1\}$ is the system $(\{0, 1, ..., n-1\}^{\mathbb{Z}}, \sigma)$, where $\sigma(x)(i) = x(i+1)$.

A *subshift* is a subsystem of full shift (over some *n*).

A *Cantor system* is a TDS where X is homeomorphic to the Cantor set. The full shift over $\{0, 1, ..., n-1\}$ is the system $(\{0, 1, ..., n-1\}^{\mathbb{Z}}, \sigma)$, where $\sigma(x)(i) = x(i+1)$. A *subshift* is a subsystem of full shift (over some *n*).

	all	minimal
arbitrary TDS	$\sim E_{Polish}$	not reducible to $E_{\mathcal{S}_{\infty}}$ (Peng)
Cantor TDS	$\sim \textit{E}_{\mathcal{S}_{\infty}}$ (Gao)	$\geq =^+$ (Kaya), not Borel (DGKKK)
subshifts	$\sim \textit{E}_{\infty}$ (Clemens)	$\geq E_0$

The systems we just constructed are not minimal. Gao asked about complexity of \cong of minimal Cantor TDS. Kaya (2015) proved that \cong of minimal Cantor TDS $\geq =^+$.

Theorem (D, Garcia-Ramos, Kasprzak, Kunde, Kwietniak)

Isomorphism of minimal Cantor TDS is not Borel.

9/18

Flip conjugacy

Two minimal Cantor TDS *T*, *S* are *flip-conjugate* if $T \cong S$ or $T \cong S^{-1}$. Given *T*, we define the *topological full group* [[*T*]] as follows: a function $\phi \in \text{Homeo}(C)$ is in [[*T*]] iff there exists a clopen partition $C = A_1 \sqcup \cdots \sqcup A_n$ and integers $k_1 \ldots k_n$ such that $\phi|_{A_i} = T^{k_i}|_{A_i}$.

- [[7]] is countable
- $T \cong_{flip} S$ iff [[T]] and [[S]] isomorphic (Giordano, Putnam, Skau '99)
- [[*T*]] is amenable (Juschenko, Monod '12)
- Commutator subgroup D([[7]]) is simple (Matui '06)
- $T \cong_{flip} S$ iff D([[T]]) and D([[S]]) isomorphic
- [[7]] is finitely generated iff $(X, T) \cong$ to a subshift

Theorem (D, Garcia-Ramos, Kasprzak, Kunde, Kwietniak)

Flip conjugacy of minimal Cantor TDS is not Borel.

Some ideas about the proof

C := Cantor set.Homeo(C) := {f: C \rightarrow C | f homeomorphism} $f \cong g \text{ iff } (C, f) \cong (C, g).$ C := Cantor set.Homeo(C) := {f: C \rightarrow C | f homeomorphism} f \cong g iff (C, f) \cong (C, g).

Another viewpoint:

write $\sigma: \mathbb{C}^{\mathbb{Z}} \to \mathbb{C}^{\mathbb{Z}}$ for the map $\sigma(x)(n) = x(n+1)$. If $A \subseteq \mathbb{C}^{\mathbb{Z}}$ is closed, perfect, and $\sigma A = A$, then $(A, \sigma|_A)$ is a Cantor TDS. Write $\mathcal{K}^{p}_{\sigma}(\mathbb{C}^{\mathbb{Z}})$ for the family of all such sets. Every Cantor TDS can be realized in this manner: A Cantor TDS (C, f) is isomorphic to $(A, \sigma|_{A})$, where

$$A = \{ \dots f^{-1}x, x, fx, f^2x, \dots | x \in C \}.$$

For all our purposes, these two viewpoints are equivalent.

A rooted countable tree (vertices might have infinite degree) can be viewed as a set $T \subseteq \mathbb{N}^{<\mathbb{N}}$ such that if $w \in T$ then all prefixes of w are in T. A tree is *ill-founded* if it has an infinite branch. $IF := \{T \in 2^{\mathbb{N}^{<\mathbb{N}}} : T \text{ ill-founded}\}$ is complete analytic subset of *Trees*.

We will build a Borel reduction

$$\textit{Trees} \ni \textit{T} \mapsto (\textit{X}_{\textit{T}},\textit{X}_{\textit{T}}') \in \mathcal{K}^{\textit{p}}_{\sigma}(\textit{C}^{\mathbb{Z}}) \times \mathcal{K}^{\textit{p}}_{\sigma}(\textit{C}^{\mathbb{Z}})$$

such that $X_T \cong X'_T$ iff T is ill-founded. This will be a Borel reduction from *IF* to \cong , which implies \cong is not Borel.

A factor map (surj. morphism) from tds (X, T) to (Y, S) is a continuous surjection $\pi: X \to Y$ such that $\pi \circ T = S \circ \pi$.

A factor map (surj. morphism) from tds (X, T) to (Y, S) is a continuous surjection $\pi: X \to Y$ such that $\pi \circ T = S \circ \pi$. If (X_n, σ) are subshifts, and $\pi_n: X_{n+1} \to X_n$ is a sequence of factor maps,

we define their inverse limit $\varprojlim(X_n, \pi_n) := (X, \sigma)$, where

$$X = \{(x_1, x_2, x_3...): x_n \in X_n \text{ and } \pi_n(x_{n+1}) = x_n\},\$$

$$\sigma\colon (x_1,x_2,x_3\dots)\mapsto (\sigma x_1,\sigma x_2,\sigma x_3\dots).$$

The result **does** depend on the factor maps π_n .

On the other hand, factor maps are far from unique: if $\pi: (X, T) \to (Y, S)$ is a factor map, then so is $\psi \circ \pi$, where $\psi \in Aut(Y, S)$.

A factor map (surj. morphism) from tds (X, T) to (Y, S) is a continuous surjection $\pi: X \to Y$ such that $\pi \circ T = S \circ \pi$. If (X_n, σ) are subshifts, and $\pi_n: X_{n+1} \to X_n$ is a sequence of factor maps,

we define their inverse limit $\lim_{n \to \infty} (X_n, \pi_n) := (X, \sigma)$, where

$$X = \{(x_1, x_2, x_3...): x_n \in X_n \text{ and } \pi_n(x_{n+1}) = x_n\},\$$

$$\sigma\colon (x_1,x_2,x_3\dots)\mapsto (\sigma x_1,\sigma x_2,\sigma x_3\dots).$$

The result **does** depend on the factor maps π_n .

On the other hand, factor maps are far from unique: if $\pi: (X, T) \to (Y, S)$ is a factor map, then so is $\psi \circ \pi$, where $\psi \in Aut(Y, S)$.

Idea: take a sequence of subshifts $(X_n, \sigma)_{n\geq 1}$ and factor maps $(\pi_n)_{n\geq 1}$. Then take different factor maps $(\pi'_n)_{n\geq 1}$, where $\pi'_n = \psi_n \pi_n$ for some $\psi_n \in Aut(X_n, \sigma)$. Then take two inverse limits X, X'. Can we find a reasonable condition for these two inverse limits to be isomorphic?

Definition

Sequence of subshifts (X_n, σ) and factor maps $\pi_n: X_{n+1} \to X_n$ is **blended** if $\forall i \geq j \geq 1$ every factor map $\zeta: X_i \to X_j$ can be written as $\psi \circ \pi_{i-1} \circ \cdots \circ \pi_i$, where $\psi \in Aut(Y, S)$.

Definition

Sequence of subshifts (X_n, σ) and factor maps $\pi_n \colon X_{n+1} \to X_n$ is **blended** if $\forall i \geq j \geq 1$ every factor map $\zeta \colon X_i \to X_j$ can be written as $\psi \circ \pi_{i-1} \circ \cdots \circ \pi_j$, where $\psi \in Aut(Y, S)$.

Lemma (2)

 X_n, π_n as above. Let $\pi'_n: X_{n+1} \to X_n$ be a different sequence of factor maps. X, X' resulting inverse limits. TFAE:

(i) (X, σ) and (X', σ) isomorphic,

(ii) there exist automorphisms $f_n \in Aut(X_n)$ such that $\pi'_n f_{n+1} = f_n \pi_n$.

To a tree T, one can attach an inverse system of groups [FRW].

 $V_n^T := \text{ vertices of } T \text{ at level } n,$ $G_n^T := \text{ the vector space over } \mathbb{F}_2 \text{ with }$ basis $V_n,$ $\rho_n^T : G_{n+1}^T \to G_n^T \text{ defined by values }$ on generators: $\rho_n^T(v) = \text{parent}(v).$

Lemma (3)

Let T be a tree. It's possible to find minimal subshifts (X_n, σ) and factor maps $\pi_n: X_{n+1} \to X_n$ such that

- $Aut(X_n, \sigma) = G_n^T \times \mathbb{Z}$, where \mathbb{Z} corresponds to the shift map
- Given two maps $F \in Aut(X_{n+1}, \sigma)$, $f \in Aut(X_n, \sigma)$, we have $\pi_n F = f\pi_n$ iff $f = \rho_n^T(F)$.
- the collection $(X_n, \sigma)_{n \ge 1}$, $(\pi_n)_{n \ge 1}$ is blended.

Combining everything together, we get

Lemma (4)

Let

$$\mathcal{Y} := \{ T, (g_n)_{n \geq 1} \colon T \in Trees, g_n \in G_n^T \text{ for all } n \}.$$

Then we have a Borel map

$$\Phi\colon \mathcal{Y}\ni (\mathcal{T},(g_n)_{n\geq 1})\mapsto (X,X')\in \mathcal{K}^p_\sigma(\mathcal{C}^\mathbb{Z})\times \mathcal{K}^p_\sigma(\mathcal{C}^\mathbb{Z})$$

such that TFAE:

(i) X, X' isomorphic,

(ii) there exist a sequence $f_n \in G_n^T$ such that $g_n + \rho_n(f_{n+1}) = f_n$

Combining everything together, we get

Lemma (4)

Let

$$\mathcal{Y} := \{ T, (g_n)_{n \geq 1} \colon T \in Trees, g_n \in G_n^T \text{ for all } n \}.$$

Then we have a Borel map

$$\Phi \colon \mathcal{Y} \ni (\mathcal{T}, (g_n)_{n \geq 1}) \mapsto (X, X') \in \mathcal{K}^p_{\sigma}(\mathcal{C}^{\mathbb{Z}}) \times \mathcal{K}^p_{\sigma}(\mathcal{C}^{\mathbb{Z}})$$

such that TFAE:

(i) X, X' isomorphic,

(ii) there exist a sequence $f_n \in G_n^T$ such that $g_n + \rho_n(f_{n+1}) = f_n$

Proof.

Pick X_n, π_n as in previous lemma. Take $X := \lim_{i \to \infty} (X_n, \pi_n)$ and $X' := \lim_{i \to \infty} (X_n, g_n \pi_n)$. Equivalence of conditions (i) and (ii) follow from Lemma 2.

Given a tree T, define new tree $\Psi(T)$ and $g_n \in G_n^{\Psi(T)}$ to be as in picture.

Given a tree T, define new tree $\Psi(T)$ and $g_n \in G_n^{\Psi(T)}$ to be as in picture.

Lemma (5)

TFAE: (i) There exists a sequence $f_n \in G_n^{\Psi(T)}$ such that $g_n + \rho_n(f_{n+1}) = f_n$, (ii) T is ill-founded. Given a tree T, define new tree $\Psi(T)$ and $g_n \in G_n^{\Psi(T)}$ to be as in picture.

Lemma (5)

TFAE: (i) There exists a sequence $f_n \in G_n^{\Psi(T)}$ such that $g_n + \rho_n(f_{n+1}) = f_n$, (ii) T is ill-founded.

Corollary

$$Trees \ni T \xrightarrow{lem. 5} (\Psi(T), (g_n)_{n \ge 1}) \xrightarrow{lem. 4} X, X'$$

is a reduction from IF to \cong of minimal Cantor systems.